SpaceX Falcon 9 Full Thrust - CRS-10 - Launching February 19, 2017
Screenshot from SpaceX Webcast of CRS-10 - Saturn V and Space Shuttles stomping ground
Mission Rundown: SpaceX Falcon 9 FT - CRS-10
Written: January 29, 2021
Houston. Falcon 9 is ready for liftoff
SpaceX is targeting a late morning launch of its tenth Commercial Resupply Services mission (CRS-10) from Launch Complex 39A (LC-39A) at NASA’s Kennedy Space Center in Florida. The instantaneous launch window is on for Saturday, February 18 at 14:39 UTC / 9:39 a.m. EST. Dragon will separate from Falcon 9’s second stage about 10 minutes after liftoff and attach to the station roughly two days later.
The CRS-10 mission will be SpaceX’s first launch from historic LC-39A at Kennedy Space Center. Following stage separation, the first stage of Falcon 9 will attempt to land at SpaceX’s Landing Zone 1 (LZ-1) at Cape Canaveral Air Force Station, Florida.
The Dragon Mission step by step
CRS-10 is part of the original order of twelve missions awarded to SpaceX under the Commercial Resupply Services contract. As of June 2016, a NASA Inspector General report had this mission manifested for November 2016. The launch was put on hold pending investigation of the pad explosion in September 2016, with a tentative date no earlier than January 2017, subsequently set for 18 February.
On 12 February 2017, SpaceX successfully completed a static fire test of the Falcon 9 engines on Pad 39A. An initial launch attempt on 18 February 2017 was scrubbed 13 seconds before its 15:01:32 UTC launch due to a thrust vector control system issue in the rocket's second stage, resulting in a 24-hour hold for launch no earlier than 19 February at 14:39 UTC. The faulty actuator was repaired at the launch pad overnight, and the rocket was returned to vertical approximately six hours before the scheduled launch time.
CRS-10 was launched from Kennedy Space Center Launch Complex 39 Pad A on 19 February 2017 at 14:39 UTC, the first launch from the complex since STS-135 on 8 July 2011, the last flight of the Space Shuttle program, and the first uncrewed mission from the site since the launch of the Skylab space station on 14 May 1973; this complex is also where the Apollo missions were launched.
Following the successful launch, the first stage went through a three-burn flyback and landed safely in Landing Zone 1, the first daytime landing of a Falcon rocket on land.
The Dragon C112-1 spacecraft rendezvoused with the International Space Station on 22 February, but its approach was automatically aborted by an on-board computer at 08:25 UTC when a data error was reported in its navigation system.
This is the first rendezvous aborted by a Dragon spacecraft. The problem was traced to an incorrect data value in the spacecraft's Global Positioning System, critical to operations as this data informs the vehicle of its relative position to the space station.
The abort resulted in a 24-hour hold on its approach. The error was corrected just in time, during which the spacecraft C112-1 entered a "racetrack" trajectory around the station to reset its approach. An error-free second attempt resulted in Dragon C112-1 being captured by the station's Canadarm2 on 23 February at 10:44 UTC, with berthing to the Harmony module taking place a few hours later at 13:12 UTC.
This abort was later revealed in a NASA Inspector General audit to have resulted from incompatibilities between NASA and SpaceX's software development processes.
The CRS-10 mission ended on 19 March 2017. The Dragon spacecraft C112-1 was detached from the International Space Station by Canadarm2 on 18 March 2017 at 21:20 UTC, moved to a stow position below the station where it stayed overnight, and was released at 09:11 UTC. Dragon C112-1 performed three departure burns to move it away from the station before conducting a final de-orbit burn at around 14:00 UTC. The spacecraft splashed down in the Pacific Ocean at 14:46 UTC, about 320 km (200 mi) southwest from Long Beach, California.
Dragon C112-1 returned 1.652 kg (3.642 lb) of material from the ISS, including research samples, science and crew equipment, and spacewalking hardware. Also removed from the station was 811 kg (1.788 lb) of external payload—including a MISSE module, the OPALS experiment, and Robotic Refueling Mission demonstration equipment—which was placed in Dragon's unpressurized trunk and disposed of when the trunk section burned up on re-entry.
View of a bare Dragon trunk width 3 payloads, no panel covers and capsule: NASA
If the trunk can be built with a spare heat shield under the Dragon’s own heat shield. The trunk is a “tin can”, so if two arms lift the spare shield out, spin it 180 degrees and pull it back, so the concave bottom becomes the blunt top. All the trunk needs now is avionics to keep it oriented, thrusters to correct the course and parachutes to soften the splash down.
Maybe it would be easier to launch a stack of heat shields on a dedicated supply mission to ISS, that could be fitted to the departing Dragon’s trunks one by one, so it would have the capability to return larger hardware payloads for parachute landing on American soil. With mounting a set of parachutes to the heatshield you have a “Return to Earth” capability, that can at least on paper give scientists a tool to retrieve large hardwares from space.
The Dragon Payload
NASA contracted the CRS-10 mission from SpaceX and therefore determined the primary payload, date/time of launch, and orbital parameters for the Dragon space capsule C112-1.
CRS-10 carried a total of 2.490 kg (5.490 lb) of cargo to the International Space Station, including 1.530 kg (3.373 lb) of pressurized cargo including packaging and 960 kg (2.116 lb) of unpressurized cargo. External payloads on the spacecraft C112-1 are the SAGE III Earth observation experiment and its Nadir Viewing Platform (NVP), and the U.S. Department of Defense's Space Test Program Houston 5 (STP-H5) package including the Raven navigation investigation and the Lightning Imaging Sensor. Some science payloads include ACME, LMM Biophysics, ZBOT, and CIR/Cool Flames.
SpaceX's CRS-10 lightest payload was the "first operational use” of the Autonomous Flight Safety System (AFSS) on "either of Air Force Space Command's Eastern or Western Ranges." AFSS is replacing "the ground-based mission flight control personnel and equipment with on-board Positioning, Navigation and Timing sources and decision logic.
The benefits of AFSS include increased public safety, reduced reliance on range infrastructure, reduced range spacelift cost, increased schedule predictability and availability, operational flexibility, and launch slot flexibility.” The system consists of software developed by NASA, the Air Force, and DARPA, to which SpaceX adds an additional software layer customized for its rocket. AFSS has flown on 13 previous Falcon 9 missions since CRS-6 in a so-called "shadow mode" for testing purposes.
Many “First” happened on this flight. I have counted five, of which the most important one was the approach abort caused by incorrect GPS data between ISS and Dragons computer programs. That is a milestone in my book. Another milestone is this fact:
26 launches from SLC-40 took place before it was destroyed in the Amos-6 fire.